All Issue

2022 Vol.44, Issue 4 Preview Page

Article

30 December 2022. pp. 269-285
Abstract
References
1
Adusumilli S, Fricker HA, Medley B, Padman L, Siegfried MR (2020) Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat Geosci 13(9):616-620. doi:10.1038/s41561-020-0616-z 10.1038/s41561-020-0616-z32952606PMC7500482
2
Arakawa A, Lamb VR (1977) Computational design of the basic numerical processes of the UCLA general circulation model. In: Chang J (ed) Methods in computation physics, Academic Press, New York, pp 173-265 10.1016/B978-0-12-460817-7.50009-4
3
Budgell WP (2005) Numerical simulation of ice-ocean variability in the Barents Sea region: towards dynamical downscaling. Ocean Dyn 55:370-387. doi:10.1007/s10236-005- 0008-3 10.1007/s10236-005-0008-3
4
Budillon G, Spezie G (2000) Thermohaline structure and variability in the Terra Nova Bay Polynya, Ross Sea. Antarct Sci 12(4):493-508 10.1017/S0954102000000572
5
Cappelletti A, Picco P, Peluso T (2010) Upper ocean layer dynamics and response to atmospheric forcing in the Terra Nova Bay polynya, Antarctica. Antarct Sci 22(3):319-329 10.1017/S095410201000009X
6
Davis PED, Nicholls KW (2019) Turbulence observations beneath larsen C ice shelf, Antarctica. J Geophys Res- Oceans 124(8):5529-5550. doi:10.1029/2019jc015164 10.1029/2019JC015164
7
Dinniman MS, Asay-Davis XS, Galton-Fenzi BK, Holland PR, Jenkins A, Timmermann R (2016) Modeling ice shelf/ ocean interaction in Antarctica: a review. Oceanography 29(4):144-153 10.5670/oceanog.2016.106
8
Dinniman MS, Klinck JM, Smith Jr WO (2003) Cross shelf exchange in a model of the Ross Sea circulation and iogeochemistry. Deep-Sea Res Pt II 50:3103-3120. doi:10.1016/j.dsr2.2003.07.011 10.1016/j.dsr2.2003.07.011
9
Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Climate 16:571-591 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
10
Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G et al. (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375-393. doi:10.5194/tc-7-375-2013 10.5194/tc-7-375-2013
11
Fusco G, Budillon G, Spezie G (2009) Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont Shelf Res 29:1887-1895. doi: 10.1016/j.csr.2009.07.006 10.1016/j.csr.2009.07.006
12
Gudmundsson GH, Paolo FS, Adusumilli S, Fricker HA (2019) Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys Res Lett 46(23):13903-13909. doi:10.1029/2019GL085027 10.1029/2019GL085027
13
Guo G, Gao L, Shi J (2020) Modulation of dense shelf water salinity variability in the western Ross Sea associated with the Amundsen Sea Low. Environ Res Lett 16:014004 10.1088/1748-9326/abc995
14
Häkkinen S, Mellor GL (1992) Modelling the seasonal variability of a coupled arctic ice-ocean system. J Geophys Res 97:20285-20304 10.1029/92JC02037
15
Hanna E, Navarro FJ, Pattyn F, Domingues CM, Fettweis X, Ivins ER, Nicholls RJ, Ritz C, Smith B, Tulaczyk S, Whitehouse PL, Zwally HJ (2013) Ice-sheet mass balance and climate change. Nature 498:51-59 10.1038/nature1223823739423
16
Hedstrom K (2018) Technical manual for a coupled Sea- Ice/Ocean circulation model (Version5). U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS Study BOEM 2018-007, 182 p
17
Hellmer HH, Olbers D (1989) A two- dimensional model for the thermohaline circulation under an ice shelf. Antarct Sci 1:325-336. doi:10.1017/S0954102089000490 10.1017/S0954102089000490
18
Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Munoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D et al. (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999-2049. doi:10.1002/qj.3803 10.1002/qj.3803
19
Holland DM, Jenkins A (1999) Modeling thermodynamic ice- ocean interactions at the base of an ice shelf. J Phys Oceanogr 29:1787-1800. doi:10.1175/1520-0485(1999)029 <1787:MTIOIA>2.0.CO;2 10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2
20
Hunke E (2001) Viscous-plastic sea ice dynamics with the EVP model: linearization issues. J Comput Phys 170:18-38 10.1006/jcph.2001.6710
21
Hunke E, Dukowicz J (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849-1867 10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
22
Jacobs SS, Fairbanks RG, Horibe Y (1985) Origin and evolution of water masses near the Antarctic continental margin: evidence from H218O/H216O ratios in seawater. Antarct Res Ser 43:59-85
23
Jacobs SS, Hellmer H, Doake C, Frolich R (1992) Melting of ice shelves and the mass balance of Antarctica. J Glaciol 38:375-387 10.1017/S0022143000002252
24
Jendersie S, Williams MJM, Langhorne PJ, Robertson R (2018) The density-driven winter intensification of the Ross Sea circulation. J Geophys Res-Oceans 123:7702-7724. doi:10.1029/2018JC013965 10.1029/2018JC013965
25
Jenkins A (1991) A one dimensional model of ice-shelf ocean interaction. J Geophys Res 96:20671-20677 10.1029/91JC01842
26
Lai C-Y, Kingslake J, Wearing MG, Chen P-HC, Gentine P, Li H, Spergel JJ, van Wessem JM (2020) Vulnerability of Antarctica's ice shelves to meltwater-driven fracture. Nature 584(7822):574-578. doi:10.1038/s41586-020-2627-8 10.1038/s41586-020-2627-832848224
27
Langhorne PJ, Hughes KG, Gough AJ, Smith IJ, Williams MJM, Robinson NJ, Stevens CL, Rack W, Price D, Leonard GH et al. (2015) Observed platelet ice distributions in Antarctic sea ice: an index for ocean-ice shelf heat flux. Geophys Res Lett 42:5442-5451. doi:10.1002/2015GL064508 10.1002/2015GL064508
28
Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363-403 10.1029/94RG01872
29
Lee WS, Hong JG, Jin YG, Kim JH, Park YC, Lee JH, Kim JH, Kim TW, Hwang CY, Lee CK et al. (2019) Final report "Investigating cryospheric evolution of the Victoria Land, Antarctica". Korea Polar Research Institute, Korea BSPM18020-044-7, 687 p
30
Leonard GH, Purdie CR, Langhorne PJ, Haskell TG, Williams MJM, Frew RD (2006) Observations of platelet ice growth and oceanographic conditions during the winter of 2003 in McMurdo Sound, Antarctica. J Geophys Res 111:C04012. doi:10.1029/2005JC002952 10.1029/2005JC002952
31
MacAyeal DR (1984) Numerical simulations of the Ross Sea tides. J Geophys Res 89(C1):607-615. doi:10.1029/JC089iC01p00607 10.1029/JC089iC01p00607
32
Malyarenko A, Robinson NJ, Williams MJM, Langhorne PJ (2019) A wedge mechanism for summer surface water inflow into the Ross Ice Shelf cavity. J Geophys Res Oceans 124:1196-1214 10.1029/2018JC014594
33
McMillan M, Shepherd A, Sundal A, Briggs K, Muir A, Ridout A, Hogg A, Wingham D (2014) Increased ice losses from Antarctica detected by CryoSat-2. Geophys Res Lett 41:3899-3905. doi:10.1002/2014GL060111 10.1002/2014GL060111
34
Mellor GL, Kantha L (1989) An ice-ocean coupled model. J Geophys Res 94:10937-10954 10.1029/JC094iC08p10937
35
Morgan VI, Jacka TH, Akerman GJ, Clarke AL (1982) Outlet glacier and mass-budget studies in Enderby, Kemp, and Mac. Robertson Lands, Antarctica. Ann Glaciol 3:204-210 10.3189/S0260305500002780
36
Morlighem M, Rignot E, Binder T, Blankenship D, Drews R, Eagles G, Eisen O, Ferraccioli F, Forsberg R, Fretwell P et al. (2020) Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience 13:132-137. doi:10.1038/s41561-019-0510-8 10.1038/s41561-019-0510-8
37
Orsi AH, Wiederwohl CL (2009) A recount of Ross Sea waters. Deep-Sea Res Pt II 56:778-795. doi:10.1016/j.dsr2.2008.10.033 10.1016/j.dsr2.2008.10.033
38
Paolo FS, Fricker HA, Padman L (2015) Volume loss from Antarctic ice shelves is accelerating Science 348:327-331. doi:10.1126/science.aaa0940 10.1126/science.aaa094025814064
39
Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic icesheet loss driven by basal melting of ice shelves. Nature 484:502-505. doi:10.1038/nature10968 10.1038/nature1096822538614
40
Rignot E, Mouginot J, Scheuchl B, van den Broeke M, van Wessem MJ, Morlighem M (2019) Four decades of Antarctic Ice Sheet mass balance from 1979-2017. Proc Natl Acad Sci USA 116(4):1095-1103. doi:10.1073/pnas.1812 883116 10.1073/pnas.181288311630642972PMC6347714
41
Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi:10.1029/2011GL046583 10.1029/2011GL046583
42
Robinson RS, Brzezinski MA, Beucher CP, Horn MGS, Bedsole P (2014) The changing roles of iron and vertical mixing in regulating nitrogen and silicon cycling in the Southern Ocean over the last glacial cycle. Paleoceanograhpy 29:1179e1195. doi:10.1002/2014PA002686 10.1002/2014PA002686
43
Rusciano E, Budillon G, Fusco G, Spezie G (2013) Evidence of atmosphere-sea ice-ocean coupling in the Terra Nova Bay polynya (Ross Sea-Antarctica). Cont Shelf Res 61-62:112-124. doi:10.1016/j.csr.2013.04.002 10.1016/j.csr.2013.04.002
44
Scambos TA, Bohlander JA, Shuman CU, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys Res Lett 31(18):L18402. doi:10.1029/2004GL020670 10.1029/2004GL020670
45
Schaffer J, Timmermann R, Arndt JE, Kristensen SS, Mayer C, Morlighem M, Steinhage D (2016) A global, high- resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst Sci Data 8:543-557. doi:10.5194/essd-8-543-2016 10.5194/essd-8-543-2016
46
Shchepetkin A, McWilliams JC (1998) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347-404 10.1016/j.ocemod.2004.08.002
47
Silvano A, Foppert A, Rintoul SR, Haumann A, Kimura N, Macdonald A (2020) Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat Geosci 13:780-786. doi:10.1038/s41561-020-00655-3 10.1038/s41561-020-00655-3
48
Song YT, Wright D (1998) A general pressure gradient formation for ocean models. part II: energy, momentum, and bottom torque consistency. Mon Weather Rev 126(12):3231-3247 10.1175/1520-0493(1998)126<3231:AGPGFF>2.0.CO;2
49
Souchez R, Meneghel M, Tison J-L, Lorrain R, Ronveaux D, Baroni C, Lozej A, Tabacco I, Jouzel J (1991) Ice composition evidence of marine ice transfer along the bottom of a small Antarctic Ice Shelf. Geophys Res Lett 18(5):849-852. doi:10.1029/91GL01077 10.1029/91GL01077
50
Stevens C, Hulbe C, Brewer M, Stewart C, Robinson N, Ohneiser C, Jendersie S (2020) Ocean mixing and heat transport processes observed under the ross ice shelf control its basal melting. Proc Natl Acad Sci USA 117:16799-16804. doi:10.1073/pnas.1910760117 10.1073/pnas.191076011732601211PMC7382223
51
Stevens C, Lee WS, Fusco G, Yun S, Grant B, Robinson N, Hwang CY (2017) The influence of the Drygalski Ice Tongue on the local ocean. Ann Glaciol 58:51-59. doi: 10.1017/aog.2017.4 10.1017/aog.2017.4
52
Storto A, Masina S, Simoncelli S, Iovino D, Cipollone A, Drevillon M, Drillet Y, von Schuckman K, Parent L, Garric G, Greiner E, Desportes C, Zuo H, Balmaseda MA, Peterson KA (2019). The added value of the multi- system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Clim Dyn 53:287-312. doi: 10.1007/s00382-018-4585-5 10.1007/s00382-018-4585-5
53
Van Woert ML, Meier WN, Zou CZ, Archer A, Pellegrini A, Grigioni P, Bertola C (2001) Satellite observations of upper-ocean currents in Terra Nova Bay, Antarctica. Ann Glaciol 33:407-412 10.3189/172756401781818879
54
Walker RT, Dupont TK, Parizek BR, Alley RB (2008) Effects of basal-melting distribution on the retreat of ice-shelf grounding lines. Geophys Res Lett 35:L17503 10.1029/2008GL034947
55
Wray PA (2019) Spatial analysis of the Nansen ice shelf basal channel, using ice penetrating radar. Master's Thesis, University of Waterloo, Waterloo, 111 p
56
Yoon S, Lee W, Stevens C, Jendersie S, Nam S, Yun S, Hwang C, Jang G, Lee J (2020) Variability in high- salinity shelf water production in the Terra Nova Bay polynya, Antarctica. Ocean Sci 16:373-388 10.5194/os-16-373-2020
Information
  • Publisher :Korea Institute of Ocean Science and Technology
  • Publisher(Ko) :한국해양과학기술원
  • Journal Title :Ocean and Polar Research
  • Journal Title(Ko) :Ocean and Polar Research
  • Volume : 44
  • No :4
  • Pages :269-285
  • Received Date : 2022-07-29
  • Revised Date : 2022-11-16
  • Accepted Date : 2022-11-25