All Issue
2025 Vol.47Article
Amini Niaki S, Haghighat E, Campbell T, Poursartip A, Vaziri R (2021) Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture. Comput Method Appl M 384:113959. doi:10.1016/j.cma.2021.113959
10.1016/j.cma.2021.113959Baker N, Alexander F, Bremer T, Hagberg A, Kevrekidis Y, Najm H, Parashar M, Patra A, Sethian J, Wild S, Willcox K, Lee S (2019) Workshop report on basic research needs for scientific machine learning: core technologies for artificial intelligence. USDOE Office of Science (SC), Washington DC, 109 p
10.2172/1478744Bonev B, Kurth T, Hundt C, Pathak J, Baust M, Kashinath K, Anandkumar A (2023) Spherical fourier neural operators: learning stable dynamics on the sphere. In: Proceedings of the 40th International Conference on Machine Learning, ICML 2023, Hawaii, 23-29 July 2023, pp 2806-2823
Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis GE (2021) Physics-informed neural networks for heat transfer problems. J Heat Transf 143(6):060801. doi:10.1115/1.4050542
10.1115/1.4050542Chen F, Chen F, Sondak D, Protopapas P, Mattheakis M, Liu S, Agarwal D, Di Giovanni M (2020) NeuroDiffEq: a python package for solving differential equations with neural networks. J Open Source Softw 5:1931. doi:10.21105/joss.01931
10.21105/joss.01931Chen T, Chen H (1995) Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans Neural Netw Learn Syst 6(4):911-917
10.1109/72.39225318263379Cheng C, Zhang GT (2021) Deep learning method based on physics informed neural network with Resnet block for solving fluid flow problems. Water 13(4):423. doi:10.3390/w13040423
10.3390/w13040423Choi BJ, Jin HS, Lkhagvasuren B (2024) Applications of the Fourier neural operator in a regional ocean modeling and prediction. Front Mar Sci 11:1383997. doi:10.3389/fmars.2024.1383997
10.3389/fmars.2024.1383997Cuomo S, Di Cola VS, Giampaolo F, Rozza G, Raissi M, Piccialli F (2022) Scientific machine learning through physics-informed neural networks: Where we are and what's next. J Sci Comput 92(3):88. doi:10.1007/s10915-022-01939-z
10.1007/s10915-022-01939-zCybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303-314
10.1007/BF02551274Dwivedi V, Srinivasan B (2020) Physics Informed Extreme Learning Machine (PIELM) - a rapid method for the numerical solution of partial differential equations. Neurocomputing 391:96-118. doi:10.1016/j.neucom.2019.12.099
10.1016/j.neucom.2019.12.099Fang Z (2021) A high-efficient hybrid physics-informed neural networks based on convolutional neural network. IEEE Trans Neural Netw Learn Syst 33(10):5514-5526. doi:10.1109/TNNLS.2021.3070878
10.1109/TNNLS.2021.307087833848251Gao H, Sun L, Wang JX (2021) PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J Comput Phys 428:110079. doi:10.1016/j.jcp.2020.110079
10.1016/j.jcp.2020.110079Gardner JR, Pleiss G, Bindel D, Weinberger KQ, Wilson AG (2018) Gpytorch: blackbox matrix-matrix Gaussian process inference with GPU acceleration. Adv Neural Inf Process Syst 31:7587-7597
Geneva N, Zabaras N (2020) Modeling the dynamics of pde systems with physics-constrained deep auto-regressive networks. J Comput Phys 403:109056. doi:10.1016/j.jcp.2019.109056
10.1016/j.jcp.2019.109056Guo S (2023) Operator learning via physics-informed DeepONet: Let's implement it from scratch. blog post. https://towardsdatascience.com/operator-learning-via-physics-informed-deeponet-lets-implement-it-from-scratch-6659f3179887 Accessed 1 Dec 2024
Haghighat E, Juanes R (2021) SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Comput Methods Appl Mech Eng 373:113552. doi:10.48550/arXiv.2005.08803
10.1016/j.cma.2020.113552He Q, Barajas-Solano D, Tartakovsky G, Tartakovsky AM (2020) Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv Water Resour 141:103610. doi:10.1016/j.advwatres.2020.103610
10.1016/j.advwatres.2020.103610Hennigh O, Narasimhan S, Nabian MA, Subramaniam A, Tangsali K, Rietmann M, Ferrandis JdA, Byeon W, Fang Z, Choudhry S (2020) NVIDIA SimNet: an AI-accelerated multi-physics simulation framework. Preprint at arXiv:2012.07938. doi:10.48550/arXiv.2012.07938
10.1007/978-3-030-77977-1_36Islam M, Thakur MSH, Mojumder S, Hasan MN (2021) Extraction of material properties through multi-fidelity deep learning from molecular dynamics simulation. Comput Mater Sci 188:110187. doi:10.1016/j.commatsci.2020.110187
10.1016/j.commatsci.2020.110187Jin X, Cai S, Li H, Karniadakis GE (2021) NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. J Comput Phys 426:109951. doi:10.1016/j.jcp.2020.109951
10.1016/j.jcp.2020.109951Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422-440
10.1038/s42254-021-00314-5Koryagin A, Khudorozkov R, Tsimfer S (2019) PyDEns: a Python framework for solving differential equations with neural networks. Preprint at arXiv:1909.11544 doi:10.48550/arXiv.1909.11544
10.3997/2214-4609.202012125Kovachki N, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K, Stuart A, Anandkumar A (2023) Neural operator: learning maps between function spaces with applications to PDEs. J Mach Learn Res 24(89):1-97
Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A (2021) Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895. doi:10.48550/arXiv.2010.08895
Li Z, Zheng H, Kovachki N, Jin D, Chen H, Liu B, Anandkumar A (2023) Physics-informed neural operator for learning partial differential equations. arXiv preprint arXiv:2111.03794. doi:10.1145/3648506
10.1145/3648506Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021a) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat Mach Intell 3:218-229. doi:10.1038/s42256-021-00302-5
10.1038/s42256-021-00302-5Lu L, Meng X, Cai S, Mao Z, Goswami S, Zhang Z, Karniadakis GE (2022) A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data. Comput Methods Appl Mech Engrg 393:114778
10.1016/j.cma.2022.114778Lu L, Meng X, Mao Z, Karniadakis GE (2021b) DeepXDE: a deep learning library for solving differential equations. SIAM Rev 63:208-228
10.1137/19M1274067Mao Z, Jagtap AD, Karniadakis GE (2020) Physics-informed neural networks for high-speed flows. Comput Methods Appl Mech Engrg 360:112789. doi:10.1016/j.cma.2019.112789
10.1016/j.cma.2019.112789Moseley B (2021) So, what is a physics-informed neural network?. Blog post. https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/ Accessed 1 Dec 2024
Novak R, Xiao L, Hron J, Lee J, Alemi AA, Sohl-Dickstein J, Schoenholz SS (2019) Neural tangents: fast and easy infinite neural networks in python. arXiv preprint arXiv:1912.02803. doi:doi.org/10.48550/arXiv.1912.02803
Pathak J, Subramanian S, Harrington P, Raja S, Chattopadhyay A, Mardani M, Kurth T, Hall D, Li Z, Azizzadenesheli K, Hassanzadeh P, Kashinath K, Anandkumar A (2022) Fourcastnet: a global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214. doi:10.48550/arXiv.2202.11214
Rackauckas C, Nie Q (2017) DifferentialEquations.jl - a performant and feature - rich ecosystem for solving differential equations in Julia. J Open Res Softw 5:15. doi:10.5334/jors.151
10.5334/jors.151Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput phys 378:686-707
10.1016/j.jcp.2018.10.045Ramabathiran AA, Ramachandran P (2021) SPINN: sparse, Physics-based, and partially Interpretable Neural Networks for PDEs. J Comput Phys 445:110600. doi:10.1016/j.jcp.2021.110600
10.1016/j.jcp.2021.110600Schiassi E, Furfaro R, Leake C, Florio MD, Johnston H, Mortari D (2021) Extreme theory of functional connections: a fast physics- informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457:334-356. doi:10.1016/j.neucom.2021.06.015
10.1016/j.neucom.2021.06.015Serrano L, Le Boudec L, Kassaï Koupaï A, Wang TX, Yin Y, Vittaut JN, Gallinari P (2023) Operator learning with neural fields: tackling PDEs on general geometries. Adv Neural Inf Process Syst 36:70581-70611
Tartakovsky AM, Marrero CO, Perdikaris P, Tartakovsky GD, Barajas-Solano D (2020) Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resour Res 56(5):e2019WR026731. doi:10.1029/2019WR026731
10.1029/2019WR026731Viana FAC, Nascimento RG, Dourado A, Yucesan YA (2021) Estimating model inadequacy in ordinary differential equations with physics-informed neural networks. Comput Struct 245:106458. doi:10.1016/j.compstruc.2020.106458
10.1016/j.compstruc.2020.106458Waheed UB, Haghighat E, Alkhalifah T, Song C, Hao Q (2021) PINNeik: eikonal solution using physics-informed neural networks. Comput Geosci 155:104833. doi:10.1016/j.cageo.2021.104833
10.1016/j.cageo.2021.104833Wang N, Chang H, Zhang D (2021a) Theory-guided auto-encoder for surrogate construction and inverse modeling. Comput Methods Appl Mech Engrg 385:114037. doi:10.1016/j.cma.2021.114037
10.1016/j.cma.2021.114037Wang S, Wang H, Perdikaris P (2021b) Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Science advances 7(40):eabi8605
10.1126/sciadv.abi860534586842PMC8480920Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, Santos LBdS, Bourne PE (2016) The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3(1):1-9
10.1038/sdata.2016.1826978244Xu K, Darve E (2020) ADCME: Learning spatially-varying physical fields using deep neural networks. Preprint at arXiv:2011.11955. doi:10.48550/arXiv.2011.11955
Yang L, Meng X, Karniadakis GE (2021) B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J Comput Phys 425:109913. doi:10.1016/j.jcp.2020.109913
10.1016/j.jcp.2020.109913Yang L, Zhang D, Karniadakis GE (2020) Physics-informed generative adversarial networks for stochastic differential equations. SIAM J Sci Comput 42(1):A292-A317. doi:10.1137/18M1225409
10.1137/18M1225409Yucesan YA, Viana FAC (2021) Hybrid physics-informed neural networks for main bearing fatigue prognosis with visual grease inspection. Comput Ind 125:103386. doi:10.1016/j.compind.2020.103386
10.1016/j.compind.2020.103386Zhang R, Liu Y, Sun H (2020) Physics-informed multi-LSTM networks for metamodeling of nonlinear structures. Comput Methods Appl Mech Engrg 369:113226. doi:10.1016/j.cma.2020.113226
10.1016/j.cma.2020.113226- Publisher :Korea Institute of Ocean Science and Technology
- Publisher(Ko) :한국해양과학기술원
- Journal Title :Ocean and Polar Research
- Journal Title(Ko) :Ocean and Polar Research
- Volume : 47
- Pages :1-15
- Received Date : 2025-01-02
- Revised Date : 2025-02-02
- Accepted Date : 2025-02-04
- Published Date : 2025-02-27
- DOI :https://doi.org/10.4217/OPR.2025001