All Issue

2024 Vol.46, Issue 1 Preview Page

Article

30 March 2024. pp. 65-82
Abstract
References
1
Arana M, Martín RS, Nagore I, Pérez D (2011) What precision in the digital terrain model is required for noise mapping? Appl Acoust 72(8):522-526. doi:10.1016/j.apacoust.2010.06.010 10.1016/j.apacoust.2010.06.010
2
ASPRS (2014) Accuracy standards for digital geospatial data. The American Society for Photogrammetry and Remote Sensing. https://www.asprs.org/a/society/divisions/pad/Accuracy/ Accessed 17 Jul 2017
3
Baek J, Choi Y (2017) A new algorithm to find raster-based least-cost paths using cut and fill operations. Int J Geogr Inf Sci 31(11):2234-2254. doi:10.1080/13658816.2017.1356463 10.1080/13658816.2017.1356463
4
Bamber JL, Griggs JA (2009) A new 1 km digital elevation model of the Antarctic derived from. TC 3(1):101-111 10.5194/tc-3-101-2009
5
Bayer B, Simoni A, Schmidt D, Bertello L (2017) Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Eng Geo 226:20-32. doi:10.1016/j.enggeo.2017.03.026 10.1016/j.enggeo.2017.03.026
6
Caló F, Notti D, Galve JP, Abdikan S, Görüm T, Pepe A, Şanli FB (2017) DInSAR-based detection of land subsidence and correlation with groundwater depletion in Konya plain, Turkey. Remote Sens 9(1):83. doi:10.3390/rs9010083 10.3390/rs9010083
7
Caro Cuenca M, Hooper AJ, Hanssen RF (2013) Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. J Appl Geophys 88:1-11. doi:10.1016/j.jappgeo.2012.10.003 10.1016/j.jappgeo.2012.10.003
8
Devanthéry N, Crosetto M, Cuevas-González M, Monserrat O, Barra A, Crippa B (2016) Deformation monitoring using persistent scatterer interferometry and Sentinel-1 SAR data. Procedia Comput Sci 100:1121-1126. doi:10.1016/j.procs.2016.09.263 10.1016/j.procs.2016.09.263
9
Dias P, Catalao J, Marques FO (2018) Sentinel-1 InSAR data applied to surface deformation in Macaronesia (Canaries and Cape Verde). Procedia Comput Sci 138:382-387. doi:10.1016/j.procs.2018.10.054 10.1016/j.procs.2018.10.054
10
Dorschel B, Hehemann L, Viquerat S, Warnke F, Dreutter S, Tenberge YS, Accettella D, An L, Barrios F, Bazhenova E (2022) The international bathymetric chart of the southern ocean version 2. Sci Data 9(1):1-13. doi:10.1038/s41597-022-01366-7 10.1038/s41597-022-01366-735672417PMC9174482
11
ESA (2012) Sentinel-1: ESA's radar observatory mission for GMES operational services (ESA SP-1322/1, March 2012). European Space Agency. https://sentinel.esa.int/documents/247904/349449/s1_sp-1322_1.pdf Accessed 12 Mar 2022
12
ESA (2014) Sentinel-1. European Space Agency. https://sentinel.esa.int/web/sentinel/missions/sentinel-1 Accessed 18 Jan 2022
13
Florinsky IV (1998) Accuracy of local topographic variables derived from digital elevation models. Int J Geogr Inf Sci 12(1):47-61. doi:10.1080/136588198242003 10.1080/136588198242003
14
Gallant JC, Read AM, Dowling TI (2012) Removal of tree offsets from SRTM and other digital surface models. In: 2012 XXII ISPRS Congress, Melbourne Convention and Exhibition Centre, Melbourne, Australia, 25 Aug-1 Sep 2012, pp 275-280. doi:10.5194/isprsarchives-XXXIX-B4-275-2012 10.5194/isprsarchives-XXXIX-B4-275-2012
15
Ghilani CD (2018) Adjustment computations: spatial data analyses. 6th Edition, John Wiley & Sons, Inc., New Jersey, 695 p 10.1002/9781119390664
16
Hooper A, Bekaert D, Spaans K, Arikan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514-517:1-13. doi:10.1016/j.tecto.2011.10.013 10.1016/j.tecto.2011.10.013
17
Huang MH, Bürgmann R, Hu JC (2016) Fifteen years of surface deformation in Western Taiwan: insight from SAR interferometry. Tectonophysics 692:252-264. doi:10.1016/j.tecto.2016.02.021 10.1016/j.tecto.2016.02.021
18
Julzarika A (2015) Height model integration using ALOS PALSAR, X SAR, SRTM C, and IceSAT/GLAS. IjReses 12(2):107-116. doi:10.30536/j.ijreses.2015.v12.a2691 10.30536/j.ijreses.2015.v12.a2691
19
Julzarika A, Aditya T, Subaryono Harintaka Dewi RD, Subehi L (2021a) Integration of the latest Digital Terrain Model (DTM) with Synthetic Aperture Radar (SAR) bathymetry. J Degrade Min Land Manage 8(3):2502-2458. doi:10.15243/jdmlm 10.15243/jdmlm
20
Julzarika A, Aditya T, Subaryono S, Harintaka H (2021b) The latest DTM using InSAR for dynamics detection of Semangko Fault-Indonesia. GAC 47(3):118-130. doi:10.3846/gac.2021.12621 10.3846/gac.2021.12621
21
Julzarika A, Aditya T, Subaryono S, Harintaka H (2022) Dynamics topography monitoring in peatland using the latest digital terrain model. JAES 20(1):246-253. doi:10.5937/jaes0-31522 10.5937/jaes0-31522
22
Julzarika A, Djurdjani D (2019) DEM classifications: opportunities and potential of its applications. J Degrade Min Land Manage 6(4)1897-1905. doi:10.15243/jdmlm.2019.064.1897 10.15243/jdmlm.2019.064.1897
23
Julzarika A, Harintaka (2019) Indonesian DEMNAS: DSM or DTM? IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), BPPT Building, Jakarta, Indonesia, 2019, pp 31-36. doi: 10.1109/AGERS48446.2019.9034351. 10.1109/AGERS48446.2019.9034351
24
Krauß T (2018) A new simplified DSM-to-DTM algorithm - dsm-to-dtm-step Preprints 2018:2018070017. doi:10.20944/preprints201807.0017.v1 10.20944/preprints201807.0017.v1
25
Kubla (2019) How accurate is the grid method for calculating earthworks cut & fill volumes? Kubla Software. https://www.kublasoftware.com/grid-method-accuracy/ Accessed 25 Apr 2022
26
Kulp SA, Strauss BH (2018) CoastalDEM: a global coastal digital elevation model improved from SRTM using a neural network. Remote Sens Environ 206:231-239. doi:10.1016/j.rse.2017.12.026 10.1016/j.rse.2017.12.026
27
Lancre JC, Fischer R, Harper B, Hunter P, Jones M, Kerr A, Laughton A, Ritchie S, Scott D, Whitmarsh M (2003) History of Gebco. The General Bathymetric Chart of the Oceans. GITC bv, Lemmer, The Netherlands, 149 p
28
Lemenkova P (2021) Dataset compilation by grass gis for thematic mapping of antarctica: topographic surface, ice thickness, subglacial bed elevation and sediment thickness. CPR 11(1):67-85. doi:10.5817/CPR2021-1-6 10.5817/CPR2021-1-6
29
Li Z, Zhu Q, Gold C (2004) Digital terrain modeling: principles and methodology. 1st ed., CRC Press, Boca Raton, 323 p 10.1201/9780203357132
30
Liao H, Meyer FJ, Scheuchl B, Mouginot J, Joughin I, Rignot E (2018) Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions. Remote Sens Environ 209:116-180. doi:10.1016/j.rse.2018.02.048 10.1016/j.rse.2018.02.048
31
Liosis N, Marpu PR, Pavlopoulos K, Ouarda TBMJ (2018) Ground subsidence monitoring with SAR interferometry techniques in the rural area of Al Wagan, UAE. Remote Sens Environ 216:276-288. doi:10.1016/j.rse.2018.07.001 10.1016/j.rse.2018.07.001
32
Maghsoudi Y, Meer F Van Der Hecker C, Perissin D, Saepuloh A (2018) Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia. Int J Appl Earth Obs Geoinformation 64:386-396. doi:10.1016/j.jag.2017.04.001 10.1016/j.jag.2017.04.001
33
Monserrat O, Crosetto M, Luzi G (2014) A review of ground-based SAR interferometry for deformation measurement. ISPRS J Photogramm 93:40-48. doi:10.1016/j.isprsjprs.2014.04.001 10.1016/j.isprsjprs.2014.04.001
34
NASA (2018) Remote sensors. National Aeronautics and Space Administration. https://earthdata.nasa.gov/user-resources/remote-sensors Accessed 17 Apr 2022
35
NASA (2019) ICESat-2. National Aeronautics and Space Administration. Goddard. https://www.nasa.gov/content/goddard/icesat-2 Accessed 18 Apr 2022
36
Nasir S, Iqbal IA, Ali Z, Shahzad A (2015) Accuracy assessment of digital elevation model generated from Pleiades tri stereo-pair. 2015 7th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, pp 193-197. doi:10.1109/RAST.2015.7208340. 10.1109/RAST.2015.7208340
37
Nelson DA, Cottle JM (2017) Long-term geochemical and geodynamic segmentation of the paleo-pacific margin of gondwana: insight from the Antarctic and Adjacent Sectors. Tectonics 36(12):3229-3247. doi:10.1002/2017 TC004611 10.1002/2017TC004611
38
Paxman GJG, Jamieson SSR, Hochmuth K, Gohl K, Bentley MJ, Leitchenkov G, Ferraccioli F (2019) Reconstructions of Antarctic topography since the Eocene-Oligocene boundary. J Paleo 535:109346. doi:10.1016/j.palaeo.2019.109346 10.1016/j.palaeo.2019.109346
39
Rucci A, Ferretti A, Monti Guarnieri A, Rocca F (2012) Sentinel 1 SAR interferometry applications: the outlook for sub millimeter measurements. Remote Sens Environ 120:156-163. doi:10.1016/j.rse.2011.09.030 10.1016/j.rse.2011.09.030
40
Ruzgiene B, Berteška T, Gečyte S, Jakubauskiene E, Aksamitauskas VČ (2015) The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement 73:619-627. doi:10.1016/j.measurement.2015.04.018 10.1016/j.measurement.2015.04.018
41
Schumann GJP, Bates PD (2019) Commentary: the need for a high-accuracy, open-access global DEM. Front Earth Sci 7:33. doi:10.3389/feart.2019.00033 10.3389/feart.2019.00033
42
Suhadha AG, Julzarika A (2022) Dynamic displacement using DInSAR of Sentinel-1 in Sunda Strait. Trends Sci 19(13):4623. doi:10.48048/tis.2022.4623 10.48048/tis.2022.4623
43
Suhadha AG, Julzarika A, Ardha M, Chusnayah F (2021) Monitoring vertical deformations of the coastal city of Palu after earthquake 2018 Using Parallel-SBAS. 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Bali, Indonesia, pp 1-6. doi:10.1109/APSAR52370.2021.9688380 10.1109/APSAR52370.2021.9688380
44
Tarikhi P (2012) Liqui-InSAR; SAR interferometry for aquatic body. In: 2012 XXII ISPRS Congress, Melbourne Convention and Exhibition Centre, Melbourne, Australia, 25 Aug-1 Sep 2012, pp 85-90. doi:10.5194/isprsarchives-XXXIX-B7-85-2012 10.5194/isprsarchives-XXXIX-B7-85-2012
45
TerraColor (2023) TerraColor NextGen satellite. Earthstar Geographics. https://www.terracolor.net/terracolor-nextgen/ Accessed 15 Mar 2023
46
Venera J, Anton F, Irina K, Alena Y (2016) SAR interferometry technique for ground deformation assessment on Karazhanbas Oilfield. Procedia Comput Sci 100:1163-1167. doi:10.1016/j.procs.2016.09.271 10.1016/j.procs.2016.09.271
47
Vernimmen R, Hooijer A, Akmalia R, Fitranatanegara N, Mulyadi D, Yuherdha A, Andreas H, Page S (2020) Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra. Carbon Balance Manage 15(1):1-18. doi:10.1186/s13021-020-00139-2 10.1186/s13021-020-00139-232206931PMC7227361
48
Xin X, Liu B, Di K, Jia M, Oberst J (2018) High-precision co-registration of orbiter imagery and digital elevation model constrained by both geometric and photometric information. ISPRS J Photogramm 144:28-37. doi:10.1016/j.isprsjprs.2018.06.016 10.1016/j.isprsjprs.2018.06.016
49
Zhang Y, Zhang Y, Zhang Y, Li X (2016) Automatic Extraction of DTM from low resolution DSM by two steps semi-global filtering. In: XXIII ISPRS Congress, Hotel Grandior Czech, Prague, Czech Republic, 12-19 Jul 2016, pp 249-255. doi:10.5194/isprs-annals-III-3-249-2016 10.5194/isprs-annals-III-3-249-2016
50
Znachko‐Yavorskiy GA (1978) The topography of Antarctica. Polar Geography 2(1):1-13. doi:10.1080/10889377809388634 10.1080/10889377809388634
Information
  • Publisher :Korea Institute of Ocean Science and Technology
  • Publisher(Ko) :한국해양과학기술원
  • Journal Title :Ocean and Polar Research
  • Journal Title(Ko) :Ocean and Polar Research
  • Volume : 46
  • No :1
  • Pages :65-82
  • Received Date : 2023-06-08
  • Revised Date : 2024-01-16
  • Accepted Date : 2024-01-18