All Issue

2022 Vol.44, Issue 1 Preview Page

Article

30 March 2022. pp. 1-11
Abstract
References
1
Amouroux D, Roberts G, Rapsomanikis S, Andreae MO (2002) Biogenic gas (CH<sub>4</sub>, N<sub>2</sub>O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuar Coast Shelf S 54(3):575-587 10.1006/ecss.2000.0666
2
Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54-62 10.2118/942054-G
3
Bange HW, Bartell UH, Rapsomanikis S, Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem Cy 8(4):465-480 10.1029/94GB02181
4
Bange HW, Bergmann K, Hansen HP, Kock A, Koppe R, Malien F, Ostrau C (2010) Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea). Biogeosciences 7: 1279-1284 10.5194/bg-7-1279-2010
5
Boesen C, Postma D (1988) Pyrite formation in anoxic environments of the Baltic. Am J Sci 288(6):575-603 10.2475/ajs.288.6.575
6
Boynton WR, Kemp WM, Barnes JM, Cowan JLW, Stammerjohn SE, Matteson LL, Garber JH (1991) Long-term characteristics and trends of benthic oxygen and nutrient fluxes in the Maryland portion of Chesapeake Bay. In: Mihursky JA, Chaney A (eds) New perspectives in the chesapeake system: a research and management partnership. Chesapeake Research Concortium Publication, Charlottesville, pp 339-354
7
Brady DC, Testa JM, Di Toro DM, Boynton WR, Kemp WM (2013) Sediment flux modeling: calibration and application for coastal systems. Estuar Coast Shelf S 117:107-124 10.1016/j.ecss.2012.11.003
8
Cai WJ, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52(2):123-131 10.1016/0304-4203(95)00081-X
9
Chanton JP, Martens CS, Goldhaber MB (1987) Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim Cosmochim Ac 51(5):1187-1199 10.1016/0016-7037(87)90211-0
10
Clark JF, Schlosser P, Simpson HJ, Stute M, Wanninkhof R, Ho DT (1995) Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: Jahne B, Monahan E (eds) Air-water gas transfer. AEON Verlag & Studio, Hanau, pp 785-800
11
De Angelis MA, Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers 1. Limnol Oceanogr 32(3): 716-722 10.4319/lo.1987.32.3.0716
12
De Angelis MA, Scranton MI (1993) Fate of methane in the Hudson River and estuary. Global Biogeochem Cy 7(3): 509-523 10.1029/93GB01636
13
Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, Slomp CP (2018) Methane feedbacks to the global climate system in a warmer world. Rev Geophys 56(1):207-250 10.1002/2017RG000559
14
Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926-929 10.1126/science.115640118703733
15
Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Çagatay MN, Wenzhöfer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11(4):1215-1259 10.5194/bg-11-1215-2014
16
Froelich P, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Ac 43(7):1075-1090 10.1016/0016-7037(79)90095-4
17
Gelesh L, Marshall K, Boicourt W, Lapham L (2016) Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, USA. Limnol Oceanogr 61(S1):S253-S266 10.1002/lno.10272
18
Higashino M, Clark JJ, Stefan HG (2009) Pore water flow due to near‐bed turbulence and associated solute transfer in a stream or lake sediment bed. Water Resour Res 45(12):12414 10.1029/2008WR007374
19
Higashino M, Stefan HG (2011) Dissolved oxygen demand at the sediment-water interface of a stream: near-bed turbulence and pore water flow effects. J Environ Eng 137(7):531-540 10.1061/(ASCE)EE.1943-7870.0000368
20
Hwang CY, Cho BC (2005) Measurement of net photosynthetic rates in intertidal flats of Ganghwa-gun and Incheon north harbor using oxygen microsensors. The Sea 10(1):31-37
21
Jiang LQ, Cai WJ, Wang Y (2008) A comparative study of carbon dioxide degassing in river‐and marine‐dominated estuaries. Limnol Oceanogr 53(6):2603-2615 10.4319/lo.2008.53.6.2603
22
Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark) 1. Limnol Oceanogr 22 (5):814-832 10.4319/lo.1977.22.5.0814
23
Kampbell DH, Vandegrift SA (1998) Analysis of dissolved methane, ethane, and ethylene in ground water by a standard gas chromatographic technique. J Chromatogr Sci 36(5): 253-256 10.1093/chromsci/36.5.2539599433
24
Keeling RF, Körtzinger A, Gruber N (2009) Ocean deoxygenation in a warming world. Ann Rev Mar Sci 2:199-229 10.1146/annurev.marine.010908.16385521141663
25
Kim SY, Lee YH, Kim YS, Shim JH, Ye MJ, Jeon JW, Jun SH (2012) Characteristics of marine environmental in the hypoxic season at Jinhae Bay in 2010. Kor J Nat Conserv 6(2):115-129 10.11624/KJNC.2012.6.2.115
26
Lee J, Kim SG, An S (2017) Dynamics of the physical and biogeochemical processes during hypoxia in Jinhae Bay, South Korea. J Coastal Res 33(4):854-863 10.2112/JCOASTRES-D-16-00122.1
27
Lee J, Park KT, Lim JH, Yoon JE, Kim IN (2018) Hypoxia in Korean coastal waters: a case study of the natural Jinhae Bay wand artificial Shihwa Bay. Front Mar Sci 5:70 10.3389/fmars.2018.00070
28
Lee JS, Kim KH, Yu J, Jung RH, Ko TS (2003) Estimation of oxygen consumption rate and organic carbon oxidation rate at the sediment/water interface of coastal sediments in the South Sea of Korea using an oxygen microsensor. The Sea 8(4):392-400
29
Lichtschlag A, Donis D, Janssen F, Jessen GL, Holtappels M, Wenzhöfer F, Boetius A (2015) Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf). Biogeosciences 12:5075-5092 10.5194/bg-12-5075-2015
30
Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Ménard (ed) The role of air-sea exchange in geochemical cycling. Springer, Dordrecht, pp 113-127 10.1007/978-94-009-4738-2_5
31
Lukawska-Matuszewska K, Graca B, Brocławik O, Zalewska T (2019) The impact of declining oxygen conditions on pyrite accumulation in shelf sediments (Baltic Sea). Biogeochemistry 142(2):209-230 10.1007/s10533-018-0530-2
32
Luther GW, Giblin A, Howarth RW, Ryans RA (1982) Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim Cosmochim Ac 46(12):2665-2669 10.1016/0016-7037(82)90385-4
33
Martens CS, Klump JV (1984) Biogeochemical cycling in an organic-rich coastal marine basin 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim Cosmochim Ac 48(10):1987-2004 10.1016/0016-7037(84)90380-6
34
Marvin-DiPasquale MC, Boynton WR, Capone DG (2003) Benthic sulfate reduction along the Chesapeake Bay central channel. II. Temporal controls. Mar Ecol-Prog Ser 260:55-70 10.3354/meps260055
35
Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences Discuss 6(2):1273-1293 10.5194/bg-6-1273-2009
36
Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, De Wilde H, Helder W, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59(1-2):95-119 10.1023/A:1015515130419
37
Moeslundi L, Thamdrup B, Jørgensen BB (1994) Sulfur and iron cycling in a coastal sediment: radiotracer studies and seasonal dynamics. Biogeochemistry 27(2):129-152 10.1007/BF00002815
38
Nisbet EG, Dlugokencky EJ, Bousquet P (2014) Methane on the rise-again. Science 343(6170):493-495 10.1126/science.124782824482471
39
Pamatmat MM (1971) Oxygen consumption by the seabed IV. Shipboard and laboratory experiments. Limnol Oceanogr 16(3):536-550 10.4319/lo.1971.16.3.0536
40
Park YP, Cha J, Song B, Huang Y, Kim S, Kim S, Jo E, Fortin S, Am S (2020) Total microbial activity and sulfur cycling microbe changes in response to the development of hypoxia in a shallow estuary. Ocean Sci J 55(1):165-181 10.1007/s12601-020-0011-0
41
Rabalais NN, Turner RE, Wiseman WJ, Boesch DF (1991) A brief summary of hypoxia on the northern Gulf of Mexico continental shelf: 1985-1988. Geol Soc 58(1):35-47 10.1144/GSL.SP.1991.058.01.03
42
Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geochem Perspect 1(1):1-2 10.7185/geochempersp.1.1
43
Rasmussen H, Jørgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar Ecol-Prog Ser 81(3):289-303 10.3354/meps081289
44
Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486-513 10.1021/cr050362v17261072
45
Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61(3):261-293 10.1023/B:CLIM.0000004577.17928.fa
46
Ryu J, AN S (2016) Seasonal variation of dissolved methane concentration and flux in the Nakdong Estuary. The Sea 21(3):91-102 10.7850/jkso.2016.21.3.91
47
Sansone FJ, Holmes ME, Popp BN (1999) Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Global Biogeochem Cy 13(2):463-474 10.1029/1999GB900012
48
Sansone FJ, Rust TM, Smith SV (1998) Methane distribution and cycling in Tomales Bay, California. Estuaries 21(1): 66-77 10.2307/1352547
49
Seitaj D, Sulu‐Gambari F, Burdorf LD, Romero‐Ramirez A, Maire O, Malkin SY, Meysman FJ (2017) Sedimentary oxygen dynamics in a seasonally hypoxic basin. Limnol Oceanogr 62(2):452-473 10.1002/lno.10434
50
Shalini A, Ramesh R, Purvaja R, Barnes J (2006) Spatial and temporal distribution of methane in an extensive shallow estuary, south India. J Earth Syst Sci 115(4):451-460 10.1007/BF02702873
51
Shin SH, Jo JG, Kim YJ, Jang SY (2015) Variation of benthic environments and macrobenthic communities in hypoxic waters of Jinhae Bay, 2015. Kor Soc Mar Environ Energ 18(3):179-188
52
Soetaer K, Herman PM, Middelburg JJ (1996) Dynamic response of deep‐sea sediments to seasonal variations: a model. Limnol Oceanogr 41(8):1651-1668 10.4319/lo.1996.41.8.1651
53
Steinberger N, Hondzo M (1999) Diffusional mass transfer at sediment-water interface. J Environ Eng 125(2):192-200 10.1061/(ASCE)0733-9372(1999)125:2(192)
54
Steinle L, Maltby J, Treude T, Kock A, Bange HW, Engbersen N, Niemann H (2017) Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters. Biogeosciences 14:1631-1645 10.5194/bg-14-1631-2017
55
Thamdrup B, Fossing H, Jørgensen BB (1994) Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Ac 58(23):5115-5129 10.1016/0016-7037(94)90298-4
56
Torres-Alvarado R, Ramírez-Vives F, Fernández FJ, Barriga- Sosa I (2005) Methanogenesis and methane oxidation in wetlands. Implications in the global carbon cycle. Hidrobiológica 15(3):327-349
57
Turner RE, Rabalais NN, Justic D (2006) Predicting summer hypoxia in the northern Gulf of Mexico: riverine N, P, and Si loading. Mar Pollut Bull 52(2):139-148 10.1016/j.marpolbul.2005.08.01216212987
58
Ullman WJ, Aller RC (1982) Diffusion coefficients in nearshore marine sediments 1. Limnol Oceanogr 27(3):552-556 10.4319/lo.1982.27.3.0552
59
Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJ (2000) Methane in the southern North Sea: low- salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochem Cy 14(4):1205-1217 10.1029/1999GB001236
60
Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res-Oceans 97 (C5):7373-7382 10.1029/92JC00188
61
Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr 12(6):351-362 10.4319/lom.2014.12.351
62
Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21(1):78-80 10.1021/je60068a029
63
Zhang G, Zhang J, Liu S, Ren J, Xu J, Zhang F. (2008). Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91(1):71-84 10.1007/s10533-008-9259-7
Information
  • Publisher :Korea Institute of Ocean Science and Technology
  • Publisher(Ko) :한국해양과학기술원
  • Journal Title :Ocean and Polar Research
  • Journal Title(Ko) :Ocean and Polar Research
  • Volume : 44
  • No :1
  • Pages :1-11
  • Received Date : 2022-01-24
  • Revised Date : 2022-02-10
  • Accepted Date : 2022-02-14